a9y United States
12y Patent Application Publication o) Pub. No.: US 2009/0327876 Al

Saks et al.

US 20090327876A1

43) Pub. Date: Dec. 31, 2009

(54)

(75)

(73)

(21)

(22)

USER INTERFACE FRAMEWORK WITH
EMBEDDED TEXT FORMATTING
Inventors: Jevan D. Saks, Redmond, WA
(US); Christopher A. Glein,
Seattle, WA (US); Stefan C.
Negritoiu, Scattle, WA (US)

Correspondence Address:
MICROSOFT CORPORATION

ONE MICROSOFT WAY

REDMOND, WA 98052 (US)

Assignee: Microsoft Corporation, Redmond,
WA (US)

Appl. No.: 12/146,046

Filed: Jun. 25, 2008

200 N

Publication Classification

(51) Int.Cl.

GOG6F 17/21 (2006.01)
(52) UsSeCle oo 715/256
(57) ABSTRACT

Various embodiments provide a user interface (Ul) frame-
work that implements techniques and processes for tagging
text 1n a markup document and designating one or more
custom text effects to be applied to the tagged text. Some
embodiments provide an integrated application programming
interface (API) that implements a common programming
model for specitying Ul elements and applying a wide variety
ol text effects to text content in a UI. Certain example embodi-
ments enable a section of text to be 1dentified and one or more
custom effects for the text to be specified 1n line with the
section of text. The Ul framework may provide one or more
pre-coded effects and/or a user may create one or more cus-
tom effects to be applied to the section of text.

202

PROVIDE MARKUP DOCUMENT WITH TEXT CONTENT

204

IDENTIFY TEXT RUN WITHIN TEXT CONTENT

206

DESIGNATE TEXT EFFECT(S) TO BE APPLIED TO TEXT
RUN

208

RENDER TEXT RUN(S) WITH TEXT EFFECT(S)

210

DisPLAY TEXT RUN WITH APPLIED TEXT EFFECT(S)

Patent Application Publication Dec. 31, 2009 Sheet 1 of 4 US 2009/0327876 Al

1005‘

-
-
-
— ™~
COMPUTING DEVICE 102
PROCESSOR(S) 104

INPUT/OUTPUT DEVICE(S)

COMPUTER-READABLE MEDIA 108

CLIENT APPLICATION(S) 110
MARKUP PARSER 112
11

Ul ENGINE

—
—

Ul CONTENT

Fig. 1

Patent Application Publication Dec. 31, 2009 Sheet 2 of 4 US 2009/0327876 Al

200 N

202
PROVIDE MARKUP DOCUMENT WITH TEXT CONTENT

204
IDENTIFY TEXT RUN WITHIN TEXT CONTENT

206
DESIGNATE TEXT EFFECT(S) TO BE APPLIED TO TEXT

RUN

208
RENDER TEXT RUN(S) WITH TEXT EFFECT(S)

210
DiSPLAY TEXT RUN WITH APPLIED TEXT EFFECT(S)

US 2009/0327876 Al

Dec. 31, 2009 Sheet 3 0f 4

Patent Application Publication

H

Em<m=_
dI3HIUNIHNNHLXI |

THH4E0T10D

NNMLX3T |

SEINELENS
1aNvd

ININOVYE PINITHILAH

(2)90¢

(2)¥0¢

TANVY

¢ DI

HIHUIANIXYNNMLXT | A :wom
TIJHO0D
(1L)¥0E

¥31v3day

H

INIWOVHININYIADAH

LREINEREN n UNY A"
U30ONIMIANI ANAYIH

SINNGTV SiIHY,

1X3] NOm”

TUFHOTOD

ANINE3dAH

US 2009/0327876 Al

Dec. 31, 2009 Sheet 4 of 4

Patent Application Publication

402

] - -
-
L - -
- & M
n

ﬁ

-... ..n

F
1

L
- . -
- L]
I -
1 .
L] . L

404

US 2009/0327876 Al

USER INTERFACE FRAMEWORK WITH
EMBEDDED TEXT FORMATTING

BACKGROUND

[0001] A typical user interface (Ul) includes a variety of
different content, such as text, graphics, multimedia content,
and so on. A common example of a user interface 1s a Web
page. The visual content of a Web page 1s typically managed
by a Web browser’s layout engine. Frameworks for most Uls,
however, provide a limited number of effects that may be
applied to text content, such as underlining, bolding, italiciz-
ing, and so on. To apply text effects beyond those commonly
available in a typical UI framework, a Web browser often has
to implement a rendering engine separate from the layout
engine 1n order to process text as 1t would any other image
content. Thus, text content may lose some or all of its text
character, and accordingly, some functionality that often
accompanies the ability to treat “text as text”.

[0002] In addition, several challenges may arise when text
1s processed by a separate rendering engine and treated as
image content. First, multiple programming models may be
utilized by the separate layout engine and rendering engine,
thus forcing a user to learn multiple programming models
and/or protocols. Second, when applying effects to text con-
tent, a user may be prevented from taking advantage of bit-
map and other effects offered by a Ul framework in 1ts pri-
mary rendering engine, since text 1s typically not treated as a
primary visualization in the main rendering pipeline. Third,
because user input 1s often handled by the main rendering
engine of a Ul framework, the ability to respond to user
interaction with individual text fragments may be limited.

SUMMARY

[0003] This Summary 1s provided to introduce a selection
of concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

[0004] Various embodiments provide a user mterface (UI)
engine that implements techniques and processes for tagging
text in a markup document and designating one or more
custom text effects to be applied to the tagged text. Some
embodiments provide an integrated application programming
interface (API) that implements a common programming
model for specifying Ul elements and applying a wide variety
ol text effects to text content 1n a UI. Certain example embodi-
ments enable a section of text to be 1dentified and one or more
custom elfects for the text to be specified in line with the
section of text. The Ul engine may provide one or more
pre-coded eflfects and/or a user may create one or more cus-
tom effects to be applied to the section of text.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The same numbers are used throughout the draw-
ings to reference like features.

[0006] FIG. 1 1illustrates one example of an operating envi-
ronment in which various principles and techniques
described herein for applying text effects can be employed 1n
accordance with one or more embodiments.

Dec. 31, 2009

[0007] FIG. 2 1s a flow diagram of one example process for
identifying text and applying effects to the text utilizing tech-
niques discussed herein, according to one or more embodi-
ments.

[0008] FIG. 3 1s acontrol tree that illustrates a logic tlow for
utilizing techniques discussed herein to identity text and
apply text eflects to the text, according to one or more
embodiments.

[0009] FIG. 4 illustrates one implementation example of
text that 1s processed using techniques discussed herein,
according to one or more embodiments.

DETAILED DESCRIPTION

Overview

[0010] Various embodiments provide a user mterface (UI)
framework that integrates text content and other Ul elements
into a consistent programming model. The framework
enables a wide variety of text formatting options to be embed-
ded with text content and provides a diverse palette of text
eifects beyond those currently available. In some embodi-
ments, a user may implement the framework to i1dentity a
section of text (hereimnafter a “text run”) and apply a graphical
elfect to the text run without the need to export the text run to
an external rendering engine and/or convert the text run to a
different format. Examples of graphical effects that may be
applied to text (“text effects™) include text blurring, text ani-
mation, text rotation, bitmap eflects, and so on. A user that
implements the framework may choose a preexisting text
elfect to apply to a text run, or may code a custom text elffect
to apply to the text run.

[0011] The Ul framework allows etlects to be applied to a
text run while treating the “text as text”. Thus, while the
framework provides a way to apply a wide variety of text
elfects to a text run, the processed text run retains 1its text
character and may be formatted, reflowed, and otherwise
treated as standard text. A processed text run may also be
copied, cut, and/or pasted to other documents and/or applica-
tions to provide data and/or content. To implement the frame-
work, certain embodiments treat a text run as a primary ele-
ment of the visualization primitives ot a UI, thus allowing the
text run to be manipulated as a primary element.

[0012] In the discussion that follows, a section entitled
“Operating Environment™ 1s provided and describes an envi-
ronment i which one or more embodiments can be
employed. Following this, a section entitled “Example Pro-
cess” 1s provided that describes one example of a process that
can implement techniques discussed herein, according to one
or more example embodiments. Finally, a section entitled
“Implementation Examples” 1s provided that discusses
details for example implementations of techniques and pro-
cesses discussed herein, according to one or more embodi-
ments.

il

Operating Environment

[0013] FIG. 11llustrates generally at 100 one example of an
operating environment that 1s operable to employ one or more
aspects of the Ul framework, 1n accordance with one or more
embodiments. Environment 100 includes a computing device
102 having one or more processors 104, one or more input/
output devices 106, and one or more computer-readable
media 108. The computing device 102 can be embodied as
any suitable computing device such as, by way of example
and not limitation, a desktop computer, a portable computer,

US 2009/0327876 Al

or a handheld computer such as a personal digital assistant
(PDA), a mobile media device, a cell phone, and the like. The
computing device 102 1s configured such that 1t can interface
with one or more networks (not shown), such as a local area
network, a wide area network, the Internet, the World Wide
Web, and so on. The mput/output devices 106 may include
any suitable device for providing input to the computing
device (e.g., akeyboard, amouse, a touch pad, and so on) and
any suitable device for providing output from the computing
device (e.g., a monitor or other graphical display, audio
speakers, and so on).

[0014] Stored on the computer-readable media 108 are one
or more client applications 110, amarkup parser 112, and a UI
engine 114. Examples of client applications include a web
development application, a web browser, a media rendering
application, and so on. The markup parser 112 processes
markup code (e.g., HIML, XML, and/or any other suitable
markup language) and converts the markup into a form that
can be utilized by the Ul engine. The Ul engine 1s configured
to implement the Ul framework discussed above, as well as
various other techniques and processes discussed herein. In
some embodiments, the Ul engine comprises an application
programming interface (API) that implements one or more
aspects of the techniques and processes discussed herein. The
UI engine 114 includes Ul content 116, which may include
various Ul elements (e.g., graphics, text, and so on) that may
be utilized to generate a Ul.

Example Process

[0015] FIG. 2 1llustrates one example of a process 200 that
implements aspects of the principles and techniques dis-
cussed herein, according to one or more embodiments. The
processes and techniques discussed herein can be imple-
mented 1n connection with any suitable hardware, software,
firmware, or combination thereof.

[0016] Block 202 provides a markup document that com-
prises text content. Block 204 identifies one or more text runs
within the text content that are to be processed with one or
more graphical text efiects. A text run may be 1dentified using,
a variety of different methods. In one example embodiment, a
text run 1s 1dentified with a particular markup tag that desig-
nates the text run as text that 1s to receive particular process-
ing, such as a text etfect. Block 206 designates one or more
text effects that are to be applied to the text run(s). Block 208
render(s) the text run(s) with the designated text effect(s), and
block 210 displays the text run(s) with the text effect(s)
applied.

[0017] In some embodiments, one or more acts of process
200 may occur 1n response to certain events. For example, a
text run may be rendered with one or more text effects in
response to a markup document being loaded by an applica-
tion, such as a Web browser. Additionally and/or alternatively,
a text run may be rendered in response to a user interaction
with the text run, such as selecting the text run with a mouse
and cursor, clicking on the text run, hovering a cursor over the
text run, and so on. While not illustrated here, some embodi-
ments reflow text content that surrounds the rendered text
runs to account for one or more changes to the text run(s).
[0018] Insome embodiments, process 200 occurs within a
single block of markup (1.¢., the text run 1s identified and the
text effects are applied within a single block of code). Process
200 may also be implemented by a single integrated API that
enables a user to specily one or more text runs, and designate
and apply one or more text effects to the text run(s) using the

APL.

Dec. 31, 2009

Implementation Examples

[0019] FIG. 3 illustrates at 300 one example of a Ul control
tree for a section of markup that specifies text content and
applies one or more text effects to text runs within the text
content. A partial example of a markup code representation
that corresponds to the control tree 300 1s presented below:

<me:Hyperlink>
<Content>

<![CDATA[This album is heavily influenced by <Artist>Foo</Artist>
and <Artist>Bar</Artist>.]]>
</Content>
</me:Hyperlink>

[0020] The content data provided above includes two text
runs that are idenftified with the <Artist> tag: “Foo” and
“Bar”. Block 302 illustrates the text content with the 1denti-
fied text runs removed to indicate that one or more text effects
will be applied to the text runs. Block 304(1) indicates that
“Foo” has been designated as a text run, and block 304(2)
indicates that “Bar” has been designated as a text run. Blocks
306(1) and 306(2) indicate that the text runs are to be rendered
with one or more designated text elfects.

[0021] FIG. 4 illustrates at 400 one example of a text run
processed with one or more text effects, according to one or
more example embodiments. Block 402 1llustrates a text run
(““Tattle Tale™) that a user has selected for recerving one or
more text effects. Block 404 1llustrates the text run after one
or more text elfects have been applied. As 1llustrated, the text
run has increased 1n size and has rotated around the z-axis. In
some embodiments, the text efiects are applied 1n response to
certain mput, such as when a user selects the text or hovers a
cursor over the text.

[0022] The following 1s one example of markup code that
may be implemented to achieve the particular text effects
illustrated 1n block 404. Following the code, particular
aspects of the code are discussed.

<UIX
xmlns="http://schemas.acme.com/2007/11x”
xmlns:code="assembly://UIX/Acme.Ir1s”
xmlns:me="Me"”

xmlns:sys="assembly://accorlib/System™>
<UI Name="Default”>

<Content>
<ColorFill Content="White”” Layout="VerticalFlow>
<Children>
<me:Hyperlink Visible="True”>
<Content>

<![CDATA[Named for the way they traded sounds and 1deas, the
Postal Service 1s an electronica-meets-indie rock supergroup featuring
Jimmy Tamborello (of <Artist ID="1111">Dntel</Artist> and <Artist
ID="1234">F1gurine</Artist>), and <Artist ID="10">Death Cab for
Cutie</Artist>"s <Artist ID="5">Ben Gibbard</Artist>; <Artist>Rilo
Kiley</Artist>’s <Artist>Jenny Lewis</Artist>, and former <Artist>Tattle
Tale</Artist> and solo artist <Artist>Jen Wood</Artist> provide backing
vocals. Tamborello and <Artist>Gibbard</Artist> first worked together on
the title track of <Artist>Dntel</Artist>’s <Album>This Is The Dream
Of Evan And Chan</Album> EP; from there, the duo continued to
collaborate via mail, with Tamborello sending electronic pieces
and <Artist>Gibbard </Artist> adding guitars, vocals, and lyrics.
The result, <Album>Give Up</Albums,
were released in early 2003 by Sub Pop. ~ Heather Phares, All Music
Guide]]>

</Content>
</me:Hyperlink>

US 2009/0327876 Al

-continued

</Children>
</ColorFill>
</Content>

<UI Name="Hyperlink”>
<Properties>
<sys:String Name="Content” String="$Required”/>
<Horizontal Alignment Name="Horizontal Alignment”™
Horizontal Alignment="Near”/>
<sys:Boolean Name="WordWrap” Boolean="True"’/>
</Properties>
<Scripts>
<Script>HyperlinkRepeater.Source = [Text.Fragments|;</Script>
</Scripts>
<Content>
<ColorFill Content="White’>
<Children>
<Text Name="Text” Color="Black” Font="Arial,20”
WordWrap="{WordWrap}” Content="{Content }”
Horizontal Alignment="{Horizontal Alignment } >
<NamedStyles>
<TextStyle Name="Artist” Color="0Orange” Fragment="true”/>
<TextStyle Name="Album” Color="Red” Fragment="true’/>
</NamedStyles>
</Text>
<Repeater Name="HyperlinkRepeater’>
<Content>
<me:HyperlinkFragment
TextFragment="{ (TextFragment)RepeatedItem } />
</Content>
</Repeater>
</Children>
</ColorFill>
</Content>

<UI Name="HyperlinkFragment”>
<Properties>
<TextFragment Name="TextFragment” TextFragment="$Required”/>
</Properties>
<Locals>
<code:BooleanChoice Name="FragmentMouseFocus™/>
<code:BooleanChoice Name="FragmentKeyFocus”/>
<code:BooleanChoice Name="FragmentClicking”/>
</Locals>
<Input>
<ClickHandler Name="Clicker”/>
</Input>
<Scripts=
<Script>UIL AllowDoubleClicks = false; </Script>
<Script>FragmentMouseFocus.Value = [UL.MouseFocus];</Script>
<Script>FragmentKeyFocus.Value = [UlLLKeyFocus];</Script>
<Script>FragmentClicking.Value = [Clicker.Clicking];</Script>
<Script>TextRunRepeater. Source = TextFragment.Runs;</Script>
</Scripts>
<Content>
<Panel>
<Children>
<Repeater Name=""TextRunRepeater”>
<Content>
<me: TextRun Name=""TextRun”
Data="{(TextRunData)RepeatedItem }”
FragmentMouseFocus="{FragmentMouseFocus}”
FragmentKeyFocus="{FragmentKeyFocus }”
FragmentClicking="{FragmentClicking}"
Mouselnteractive="True”>
<Margins:>
<Inset Left="{((TextRunData)RepeatedItem).Position.X }”
Top="{((TextRunData)RepeatedItem).Position.Y } />
</Margins>
</me:TextRun>
</Content>
</Repeater>
</Childrens
</Panel>

</Content>

Dec. 31, 2009

-continued

<UI Name=""TextRun™>
<Properties>
<TextRunData Name="Data” TextRunData="$Required”/>
<code:BooleanChoice Name="FragmentMouseFocus™/>
<code:BooleanChoice Name="FragmentKeyFocus™/>
<code:BooleanChoice Name="FragmentClicking™/>
</Properties>
<Scripts>
<Script>
if ([FragmentMouseFocus.Value])
Renderer.Color = Color.Blue;
else
Renderer.Color = Data.Color;
</Script=
<Script>
[DeclareTrigger(FragmentClicking. Value)]
if (FragmentClicking.Value)
1
ColorFill.Scale = new Vector3(1.2,1.2,1.2);
ColorFill.Rotation = new Rotation(2);

h

clse
{
ColorFill.Scale = new Vector3(1.0,1.0,1.0);
ColorFill.Rotation = new Rotation(0);
h
</Script=
</Scripts>
<Content>
<ColorFill Name="ColorFill” Content="Transparent™
Layout="HorizontalFlow™ >
<Animations:
<Animation Type="Scale” CenterPointPercent="0.5, 0.5, 0”>
<Keyirames>
<ScaleKeyframe Time="0.0" RelativeTo="Current”/>
<ScaleKeyirame Time="0.1" RelativeTo="Final™/>
</Keylrames>
</Animation:
<Animation Type="Rotate” CenterPointPercent="0.5, 0.5, 0>
<Keyframes>
<RotateKeyirame Time="0.0" RelativeTo="Current”/>
<RotateKeyframe Time="0.1" RelativeTo="Fnal/>
</Keyirames>
</Animation>
</Animations>
<Children>
<TextRunRenderer Name="Renderer” Data="{Data }”/>
</Children=
</ColorFill>
</Content>

</UIX>

[0023] Illustrated in the markup code above 1s a section of
text content labeled by the CDATA tag. Within the text con-
tent are several text runs labeled by various tags that identify
the text within the tags as text runs (e.g., the “<Artist> " and
“<Album>" tags). Of particular interest 1n this example 1s the
text run “Tattle Tale” that 1s within the <Artist> tags (1.e.,
“<Artist>Tattle Tale</Artist>""). This text run corresponds to
the central text in FIG. 4.

[0024] Furtherin the section of markup are a number of text
elfects that are to be applied to one or more 1dentified text
runs. One example of this code 1s the following;

<UI Name=""]extRun’>
<Properties>
<TextRunData Name="Data” TextRunData="$Required”/>
<code:BooleanChoice Name="FragmentMouseFocus™/>
<code:BooleanChoice Name="FragmentKeyFocus™/>

US 2009/0327876 Al

-continued

<code:BooleanChoice Name="“FragmentClicking”/>
</Properties>
<Scripts>
<Script>
if ([FragmentMouseFocus.Value])
Renderer.Color = Color.Blue;
else
Renderer.Color = Data.Color;
</Script>
<Script>
[DeclareTrigger(FragmentClicking.Value)]
if (FragmentClicking.Value)
{
ColorFill.Scale = new Vector3(1.2,1.2,1.2);
ColorFill.Rotation = new Rotation(2);

;

else
1
ColorFill.Scale = new Vector3(1.0,1.0,1.0);
ColorFill.Rotation = new Rotation(0);
h
</Script=
</Scripts>
<Content>
<ColorFill Name="ColorFill” Content=""Transparent”
Layout="HorizontalFlow”" >
<Animations:
<Animation Type="Scale” CenterPointPercent="0.5, 0.5, 0>
<Keyirames>
<ScaleKeyframe Time="0.0" RelativeTo="Current”/>
<ScaleKeyirame Time="0.1" RelativeTo="Final”/>
</Keyframes>
</Animation:>
<Animation Type="Rotate” CenterPointPercent="0.5, 0.5, 0>
<Keyirames>
<RotateKeyirame Time="0.0" RelativeTo="Current”/>
<RotateKeyirame Time="0.1" RelativeTo="Final”/>
</Keyirames>
</ Animationx
</Animations:>
<Children>
<TextRunRenderer Name="“Renderer” Data="{Data}”/>
</Children>
</ColorFill>
</Content>

</UIX>

[0025] In the section of markup above, the “<UI

name="textrun’>"" tag identifies the section following the tag
as including code for custom text et

ects that are to be applied
to the identified text run(s). Following the tag are several
sections of executable script that provide the text effects. In
some embodiments, one or more sections of script that apply
text effects are executed when the markup document 1s loaded
by an application (e.g., a web browser) at the application’s
runtime. Additionally and/or alternatively, the script may be
executed 1n response to user input, such as a mouse click on a
text run and/or hovering a cursor over atextrun. As illustrated
in the markup, the scripts provide for effects such as changing
text color, text scaling, and text rotation. In this example, the
script provides a color change, scale change, and rotation for
the text run 1dentified 1n FIG. 4. The markup also includes a
“textrunrenderer’” element, which indicates that the identified

text run(s) are to be rendered with the specified text effect(s).
These particular text effects are illustrated for purposes of
example only, and a wide vaniety of text effects may be
implemented without departing from the spirit and scope of
the claimed embodiments. To provide text effects for a text
run, a user may select one or more preexisting text effects to

Dec. 31, 2009

be applied to a text run, and/or the user may provide code
(e.g., one or more custom scripts) for the text effects.

[0026] As 1llustrated 1n the examples above, one or more
embodiments enable a user to (1) identily one or more text
runs 1n markup and, 1n line with the 1dentified text run(s), (2)
specily one or more custom text effects to be applied to the
text run(s). Multiple different text runs or groups of text runs
may each be identified with different text run tags, thus allow-
ing each of the different text runs or groups of text runs to be
rendered with one or more unique text effects.

[0027] Various techniques may be described herein in the
general context of software or program modules. Generally,
software includes routines, computer-executable instruc-
tions, programs, objects, components, data structures, and so
forth that perform particular tasks or implement particular
abstract data types. An implementation of these modules and
techniques may be stored on or transmitted across some form
of computer-readable media. Computer-readable media can
be any available medium or media that can be accessed by a
computing device. By way of example, and not limitation,
computer readable media may comprise “computer storage
media”.

[0028] “‘Computer storage media” include volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer readable 1nstructions, data structures, program
modules, or other data. Computer storage media include, but
are not llmlted to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can be accessed by a computer.

CONCLUSION

[0029] The above-described principles and techniques pro-
vide for identifying text and specitying text eflects for the
text. Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What 1s claimed 1s:
1. A method implemented by one or more computing
devices, the method comprising;:
identilying, using a tag, a text run within text content that 1s
in a markup document; and
speciiying within the markup document a text effect to be
applied to the text run, the text etlect comprising execut-
able code within the markup document, the executable
code being configured to apply one or more graphical
elfects to the text run based at least 1n part on the tag.
2. A method as recited 1n claim 1, wherein the method 1s
implemented by an application programming interface (API).
3. A method as recited 1n claim 1, wherein the text effect
comprises script within the markup document.
4. A method as recited inclaim 1, wherein at least one of the
one or more graphical effects comprises text rotation.
5.A method asrecited inclaim 1, wherein at least one of the
one or more graphical effects comprises text animation.
6. A method as recited inclaim 1, wherein at least one of the
one or more graphical effects comprises a bitmap effect.

US 2009/0327876 Al

7. A method as recited 1n claim 1, further comprising ren-
dering the text run with the text effect.

8. A method as recited in claim 7, wherein the act of
rendering occurs 1n response to the markup document being,
loaded by an application.

9. A method as recited in claim 7, wherein the act of
rendering occurs 1n response to an interaction with the text
run.

10. A method implemented by one or more computing
devices, the method comprising;:

loading a markup document that comprises text content
and a text run within the text content, the text run being
identified by a tag;

determining a text effect to be applied to the text run, the
text effect being specified within the markup document
and being associated with the text run based at least 1n
part on the tag;

applying the text etffect to the text run; and
rendering the text run with the text etfect applied.

11. A method as recited in claim 10, wherein the method 1s
implemented by an application programming interface (API).
12. A method as recited in claim 10, wherein the text

content comprises a plurality of different text runs, each of the
text runs being i1dentified by a respective tag.

it i

13. A method as recited 1n claim 10, wherein the text effect
comprises executable script within the markup document.

Dec. 31, 2009

14. A method as recited in claim 13, wherein the text effect
utilizes the tag to identify the text run.

15. A method as recited in claim 10, wherein the text effect
comprises one or more of text rotation, text animation, or a

bitmap etfect.

16. A system comprising:

One Or More Processors;

one or more computer-readable storage media;

computer-executable mstructions stored on the computer-

readable storage media and executable by the one or

more processors to implement a method comprising:

marking a text run within text content with a tag; and

specilying a text effect, the text effect comprising script
that 1s executable to apply a graphical effect to the text
run based at least 1n part on the tag.

17. A system as recited 1n claim 16, wherein the method 1s
implemented by an application programming interface (API).

18. A system as recited in claim 16, wherein the graphical
eifect comprises one or more of text animation, text scaling,
or text rotation.

19. A system as recited 1n claim 16, wherein the text effect
1s configured to be applied to the text run 1n response to an
interaction with the text run.

20. A system as recited in claim 16, wherein the method
further comprises making the text run with the graphical

clfect applied available to be displayed.

e e o e i

	Front Page
	Drawings
	Specification
	Claims

